Artificial Intelligence Tutorial

Introduction to Artificial Intelligence Intelligent Agents Artificial intelligence Permeations Difference Between Greedy Best First Search and Hill Climbing Algorithm Multi-Layer Feed-Forward Neural Network Implementing Artificial Neural Network Training Process in Python Agent Environment in Artificial Intelligence Search Algorithms in Artificial Intelligence Turing Test in AI Reasoning in Artificial Intelligence Mini-Max Algorithm in Artificial Intelligence Examples of artificial intelligence software How to Implement Interval Scheduling Algorithm in Python Means-Ends Analysis in Artificial Intelligence Mini-Batch Gradient Descent with Python Choose the Optimal Number of Epochs to Train a Neural Network in Keras Difference between Backward Chaining and Forward Chaining Difference between Feed-Forward Neural Networks and Recurrent Neural Networks Narrow Artificial Intelligence Artificial Intelligence in Banking Approaches of Artificial Intelligence Artificial Intelligence Techniques Issues in Design of Search Problem in Artificial Intelligence Markov Network in Artificial Intelligence Ontology in Artificial Intelligence Opportunities in Artificial Intelligence Research Center for Artificial Intelligence Scope of Artificial Intelligence and Machine Learning (AI & ML) in India Uniform-Cost Search Algorithm in Artificial Intelligence What is OpenAI Who invented Artificial Intelligence Artificial Intelligence in Medicine History and Evolution of Artificial Intelligence How can we learn Artificial Intelligence (AI) Objective of developing Artificial Intelligence Systems Artificial Intelligence and Robotics Physics in Artificial Intelligence What are the Advantages and Disadvantages of Artificial Neural Networks? The Role of AIML in Transforming Customer Support

Search Algorithms

Problem-solving Uninformed Search Informed Search Heuristic Functions Local Search Algorithms and Optimization Problems Hill Climbing search Differences in Artificial Intelligence Adversarial Search in Artificial Intelligence Minimax Strategy Alpha-beta Pruning Constraint Satisfaction Problems in Artificial Intelligence Cryptarithmetic Problem in Artificial Intelligence Difference between AI and Neural Network Difference between Artificial Intelligence and Human Intelligence Virtual Assistant (AI Assistant) ARTIFICIAL INTELLIGENCE PAINTING ARTIFICIAL INTELLIGENCE PNG IMAGES Best Books to learn Artificial Intelligence Certainty Factor in AI Certainty Factor in Artificial Intelligence Disadvantages of Artificial Intelligence In Education Eight topics for research and thesis in AI Engineering Applications of Artificial Intelligence Five algorithms that demonstrate artificial intelligence bias 6th Global summit on artificial intelligence and neural networks Artificial Communication Artificial Intelligence in Social Media Artificial Intelligence Interview Questions and Answers Artificial Intelligence Jobs in India For Freshers Integration of Blockchain and Artificial Intelligence Interesting Facts about Artificial Intelligence Machine Learning and Artificial Intelligence Helps Businesses Operating System Based On Artificial Intelligence SIRI ARTIFICIAL INTELLIGENCE SKILLS REQUIRED FOR ARTIFICIAL INTELLIGENCE Temporal Models in Artificial Intelligence Top 7 Artificial Intelligence and Machine Learning trends for 2022 Types Of Agents in Artificial Intelligence Vacuum Cleaner Problem in AI Water Jug Problem in Artificial Intelligence What is Artificial Super Intelligence (ASI) What is Logic in AI Which language is used for Artificial Intelligence Essay on Artificial Intelligence Upsc Flowchart for Genetic Algorithm in AI Hill Climbing In Artificial Intelligence IEEE Papers on Artificial Intelligence Impact of Artificial Intelligence On Everyday Life Impact of Artificial Intelligence on Jobs The benefits and challenges of AI network monitoring

Knowledge, Reasoning and Planning

Knowledge based agents in AI Knowledge Representation in AI The Wumpus world Propositional Logic Inference Rules in Propositional Logic Theory of First Order Logic Inference in First Order Logic Resolution method in AI Forward Chaining Backward Chaining Classical Planning

Uncertain Knowledge and Reasoning

Quantifying Uncertainty Probabilistic Reasoning Hidden Markov Models Dynamic Bayesian Networks Utility Functions in Artificial Intelligence

Misc

What is Artificial Super Intelligence (ASI) Artificial Satellites Top 7 Artificial Intelligence and Machine Learning trends for 2022 8 best topics for research and thesis in artificial intelligence 5 algorithms that demonstrate artificial intelligence bias AI and ML Trends in the World AI vs IoT Artificial intelligence Permeations Difference Between Greedy Best First Search and Hill Climbing Algorithm What is Inference in AI Inference in Artificial Intelligence Interrupt in CPI Artificial Intelligence in Broadcasting Ai in Manufacturing Conference: AI Vs Big Data Career: Artificial Ingtelligence In Pr: AI in Insurance Industry Which is better artificial intelligence and cyber security? Salary of Ai Engineer in Us Artificial intelligence in agriculture Importance Of Artificial Intelligence Logic in Artificial Intelligence

Utility Functions in Artificial Intelligence

The agents use the utility theory for making decisions. It is the mapping from lotteries to the real numbers. An agent is supposed to have various preferences and can choose the one which best fits his necessity.

Utility scales and Utility assessments

To help an agent in making decisions and behave accordingly, we need to build a decision-theoretic system. For this, we need to understand the utility function. This process is known as preference elicitation In this, the agents are provided with some choices and using the observed preferences, the respected utility function is chosen. Generally, there is no scale for the utility function. But, a scale can be established by fixing the boiling and freezing point of water. Thus, the utility is fixed as:

 U(S)=uT for best possible cases

 U(S)= u?  for worst possible cases.

A normalized utility function uses a utility scale with value uT=1, and u? =0. For example, a utility scale between uT and u?  is given. Thereby an agent can choose a utility value between any prize Z and the standard lottery [p, u_; (1?p), u?]. Here, p denotes the probability which is adjusted until the agent is adequate between Z and the standard lottery.

Like in medical, transportation, and environmental decision problems, we use two measurement units: micromort or QUALY(quality-adjusted life year) to measure the chances of death of a person.

Money Utility

Economics is the root of utility theory. It is the most demanding thing in human life. Therefore, an agent prefers more money to less, where all other things remain equal. The agent exhibits a monotonic preference(more is preferred over less) for getting more money. In order to evaluate the more utility value, the agent calculates the Expected Monetary Value(EMV) of that particular thing. But this does not mean that choosing a monotonic value is the right decision always.

Multi-attribute utility functions

Multi-attribute utility functions include those problems whose outcomes are categorized by two or more attributes. Such problems are handled by multi-attribute utility theory.

Terminology used

  • Dominance:  If there are two choices say A and B, where A is more effective than B. It means that A will be chosen. Thus, A will dominate B. Therefore, multi-attribute utility function offers two types of dominance:
  • Strict Dominance: If there are two websites T and D, where the cost of T is less and provides better service than D. Obviously, the customer will prefer T rather than D. Therefore, T strictly dominates D. Here, the attribute values are known.
  • Stochastic Dominance:  It is a generalized approach where the attribute value is unknown. It frequently occurs in real problems. Here, a uniform distribution is given, where that choice is picked, which stochastically dominates the other choices. The exact relationship can be viewed by examing the cumulative distribution of the attributes.
  • Preference Structure: Representation theorems are used to show that an agent with a preference structure has a utility function as:

U(x1, . . . , xn) = F[f1(x1), . . . , fn(xn)],

            where F indicates any arithmetic function such as an addition function.

Therefore, preference can be done in two ways :

  • Preference without uncertainty: The preference where two attributes are preferentially independent of the third attribute. It is because the preference between the outcomes of the first two attributes does not depend on the third one.
    • Preference with uncertainty: This refers to the concept of preference structure with uncertainty. Here, the utility independence extends the preference independence where a set of attributes X is utility independent of another Y set of attributes, only if the value of attribute in X set is independent of Y set attribute value. A set is said to be mutually utility independent (MUI) if each subset is utility-independent of the remaining attribute.