Data Structures Tutorial

Data Structures Tutorial Asymptotic Notation Structure and Union Array Data Structure Linked list Data Structure Type of Linked list Advantages and Disadvantages of linked list Queue Data Structure Implementation of Queue Stack Data Structure Implementation of Stack Sorting Insertion sort Quick sort Selection sort Heap sort Merge sort Bucket sort Count sort Radix sort Shell sort Tree Traversal of the binary tree Binary search tree Graph Spanning tree Linear Search Binary Search Hashing Collision Resolution Techniques

Misc Topic:

Priority Queue in Data Structure Deque in Data Structure Difference Between Linear And Non Linear Data Structures Queue Operations In Data Structure About Data Structures Data Structures Algorithms Types of Data Structures Big O Notations Introduction to Arrays Introduction to 1D-Arrays Operations on 1D-Arrays Introduction to 2D-Arrays Operations on 2D-Arrays Strings in Data Structures String Operations Application of 2D array Bubble Sort Insertion Sort Sorting Algorithms What is DFS Algorithm What Is Graph Data Structure What is the difference between Tree and Graph What is the difference between DFS and BFS Bucket Sort Dijkstra’s vs Bellman-Ford Algorithm Linear Queue Data Structure in C Stack Using Array Stack Using Linked List Recursion in Fibonacci Stack vs Array What is Skewed Binary Tree Primitive Data Structure in C Dynamic memory allocation of structure in C Application of Stack in Data Structures Binary Tree in Data Structures Heap Data Structure Recursion - Factorial and Fibonacci What is B tree what is B+ tree Huffman tree in Data Structures Insertion Sort vs Bubble Sort Adding one to the number represented an array of digits Bitwise Operators and their Important Tricks Blowfish algorithm Bubble Sort vs Selection Sort Hashing and its Applications Heap Sort vs Merge Sort Insertion Sort vs Selection Sort Merge Conflicts and ways to handle them Difference between Stack and Queue AVL tree in data structure c++ Bubble sort algorithm using Javascript Buffer overflow attack with examples Find out the area between two concentric circles Lowest common ancestor in a binary search tree Number of visible boxes putting one inside another Program to calculate the area of the circumcircle of an equilateral triangle Red-black Tree in Data Structures Strictly binary tree in Data Structures 2-3 Trees and Basic Operations on them Asynchronous advantage actor-critic (A3C) Algorithm Bubble Sort vs Heap Sort Digital Search Tree in Data Structures Minimum Spanning Tree Permutation Sort or Bogo Sort Quick Sort vs Merge Sort Boruvkas algorithm Bubble Sort vs Quick Sort Common Operations on various Data Structures Detect and Remove Loop in a Linked List How to Start Learning DSA Print kth least significant bit number Why is Binary Heap Preferred over BST for Priority Queue Bin Packing Problem Binary Tree Inorder Traversal Burning binary tree Equal Sum What is a Threaded Binary Tree? What is a full Binary Tree? Bubble Sort vs Merge Sort B+ Tree Program in Q language Deletion Operation from A B Tree Deletion Operation of the binary search tree in C++ language Does Overloading Work with Inheritance Balanced Binary Tree Binary tree deletion Binary tree insertion Cocktail Sort Comb Sort FIFO approach Operations of B Tree in C++ Language Recaman’s Sequence Tim Sort Understanding Data Processing Applications of trees in data structures Binary Tree Implementation Using Arrays Convert a Binary Tree into a Binary Search Tree Create a binary search tree Horizontal and Vertical Scaling Invert binary tree LCA of binary tree Linked List Representation of Binary Tree Optimal binary search tree in DSA Serialize and Deserialize a Binary Tree Tree terminology in Data structures Vertical Order Traversal of Binary Tree What is a Height-Balanced Tree in Data Structure Convert binary tree to a doubly linked list Fundamental of Algorithms Introduction and Implementation of Bloom Filter Optimal binary search tree using dynamic programming Right side view of binary tree Symmetric binary tree Trim a binary search tree What is a Sparse Matrix in Data Structure What is a Tree in Terms of a Graph What is the Use of Segment Trees in Data Structure What Should We Learn First Trees or Graphs in Data Structures All About Minimum Cost Spanning Trees in Data Structure Convert Binary Tree into a Threaded Binary Tree Difference between Structured and Object-Oriented Analysis FLEX (Fast Lexical Analyzer Generator) Object-Oriented Analysis and Design Sum of Nodes in a Binary Tree What are the types of Trees in Data Structure What is a 2-3 Tree in Data Structure What is a Spanning Tree in Data Structure What is an AVL Tree in Data Structure Given a Binary Tree, Check if it's balanced B Tree in Data Structure Convert Sorted List to Binary Search Tree Flattening a Linked List Given a Perfect Binary Tree, Reverse Alternate Levels Left View of Binary Tree What are Forest Trees in Data Structure Compare Balanced Binary Tree and Complete Binary Tree Diameter of a Binary Tree Given a Binary Tree Check the Zig Zag Traversal Given a Binary Tree Print the Shortest Path Given a Binary Tree Return All Root To Leaf Paths Given a Binary Tree Swap Nodes at K Height Given a Binary Tree Find Its Minimum Depth Given a Binary Tree Print the Pre Order Traversal in Recursive Given a Generate all Structurally Unique Binary Search Trees Perfect Binary Tree Threaded Binary Trees

Binary Tree Implementation Using Arrays

Implementation

Converting a binary tree into a list of arrays is one interesting problem. Let us see that in depth.

In this section, we will see the implementation of the binary Trees while using arrays. let us proceed: -

#include<bits/stdc++.h>
using namespace std;
char T[10];
int root(char ky) {
if (T[0] != '\0')
	cout << "T already had root";
else
	T[0] = ky;
return 0;
}


int set_lft(char ky, int Parr) {
if (T[Parr] == '\0')
	cout << "\nCan't set child at "
	<< (Parr * 2) + 1
	<< " , no Parr found";
else
	T[(Parr * 2) + 1] = ky;
return 0;
}


int set_rt(char ky, int Parr) {
if (T[Parr] == '\0')
	cout << "\nCan't set child at "
	<< (Parr * 2) + 2
	<< " , no Parr found";
else
	T[(Parr * 2) + 2] = ky;
return 0;
}


int print_T() {
cout << "\n";
for (int i = 0; i < 10; i++) {
	if (T[i] != '\0')
	cout << T[i];
	else
	cout << "-";
}
return 0;
}
int main() {
root('A');
set_lft('B',0);
set_rt('C', 0);
set_lft('D', 1);
set_rt('E', 1);
set_rt('F', 2);
print_T();
return 0;
}

Output:

Binary Tree Implementation Using Arrays

Example 2)

Let's start with the step by making an array

#include <stdio.h>


/*


           D
          / \
         /   \
        /     \
       A       F
      / \     / \    
     /   \   /   \
    E     B R     T
   / \     /     / \
  G   Q   V     J   L
*/


int CO_nod = 15;


char T[] = {'\0', 'D', 'A', 'F', 'E', 'B', 'R', 'T', 'G', 'Q', '\0', '\0', 'V', '\0', 'J', 'L'};


int main()
{
    return 0;
}
int get_rt_child(int idx)
{
    if(T[idx]!='\0' && ((2*idx)+1)<=CO_nod)
        return (2*idx)+1;
    return -1;
}
/*


           D
          / \
         /   \
        /     \
       A       F
      / \     / \    
     /   \   /   \
    E     B R     T
   / \     /     / \
  G   Q   V     J   L
*/


int CO_nod = 15;


char T[] = {'\0', 'D', 'A', 'F', 'E', 'B', 'R', 'T', 'G', 'Q', '\0', '\0', 'V', '\0', 'J', 'L'};


int get_rt_child(int idx)
{
    if(T[idx]!='\0' && ((2*idx)+1)<=CO_nod)
        return (2*idx)+1;
    return -1;
}


int get__lft_child(int idx)
{
    
    if(T[idx]!='\0' && (2*idx)<=CO_nod)
        return 2*idx;
    return -1;
}


int Is__lf(int idx)
{
    if(!get__lft_child(idx) && !get__rt_child(idx))  
        return 1;
    if(T[get__lft_child(idx)]=='\0' && T[get__rt_child(idx)]=='\0')
        return 1;
    return 0; 
}


int get_high(int x, int y)
{
    return (x>y) ? x: y;
}


int get_H(int idx)
{
    if(T[idx]=='\0' || idx<=0 || Is__lf(idx))
        return 0;
    return(get_high(get_H(get__lft_child(idx)), get_H(get_rt_child(idx)))+1);
}


int main()
{
    printf("%d\n",get_H(1));
    return 0;
}

Output:

Binary Tree Implementation Using Arrays

Example 3)

#include <stdio.h>


/*


           D
          / \
         /   \
        /     \
       A       F
      / \     / \    
     /   \   /   \
    E     B R     T
   / \     /     / \
  G   Q   V     J   L
*/


int CO_nod = 15;


char T[] = {'\0', 'D', 'A', 'F', 'E', 'B', 'R', 'T', 'G', 'Q', '\0', '\0', 'V', '\0', 'J', 'L'};
//creating a function to get the parent node
int get_Parr(int idx)
{
    if(T[idx]!='\0' && idx>1 && idx<=CO_nod) 
        return idx/2;
    return -1;
}


int get__rt_child(int idx)
{
    if(T[idx]!='\0' && ((2*idx)+1)<=CO_nod)
        return (2*idx)+1;
    return -1;
}


int get__lft_child(int idx)
{
    if(T[idx]!='\0' && (2*idx)<=CO_nod)
        return 2*idx;
    return -1;
}


void pre_Ord(int idx)
{
    // checking for valid idx and NILL node
    if(idx>0 && T[idx]!='\0')
    {
        printf(" %c ",T[idx]); 
        pre_Ord(get__lft_child(idx)); 
        pre_Ord(get_rt_child(idx)); 
    }
}


void post_Ord(int idx)
{
    // checking whether the index is correct or not.
    if(idx>0 && T[idx]!='\0')
    {
        post_Ord(get__lft_child(idx)); 
        post_Ord(get_rt_child(idx)); 
        printf(" %c ",T[idx]); 
    }
}


void In_Ord(int idx)
{
    // checking whether the index is correct or not.
    if(idx>0 && T[idx]!='\0')
    {
        In_Ord(get__lft_child(idx)); 
        printf(" %c ",T[idx]); 
        In_Ord(get_rt_child(idx)); 
    }
}


int Is__lf(int idx)
{
    //verifying whether the left and right children have valid indices or not. 
    if(!get__lft_child(idx) && !get__rt_child(idx))  
        return 1;
    //verifying if both the child nodes have NILL value or not  
    if(T[get__lft_child(idx)]=='\0' && T[get_rt_child(idx)]=='\0')
        return 1;
    return 0; // node is not a leaf
}


int get_high(int x, int y)
{
    return (x>y) ? x: y;
}


int get_H(int idx)
{
    // if the node is a leaf, then the height will be 0
    // the height will be 0 also for the invalid cases
    if(T[idx]=='\0' || idx<=0 || Is__lf(idx))
        return 0;
    // height of node i is 1+ maximum among the height of left subtree and the height of right subtree
    return(get_high(get_H(get__lft_child(idx)), get_H(get_rt_child(idx)))+1);
}

Output:

Binary Tree Implementation Using Arrays