Data Structures Tutorial

Data Structures Tutorial Asymptotic Notation Structure and Union Array Data Structure Linked list Data Structure Type of Linked list Advantages and Disadvantages of linked list Queue Data Structure Implementation of Queue Stack Data Structure Implementation of Stack Sorting Insertion sort Quick sort Selection sort Heap sort Merge sort Bucket sort Count sort Radix sort Shell sort Tree Traversal of the binary tree Binary search tree Graph Spanning tree Linear Search Binary Search Hashing Collision Resolution Techniques

Misc Topic:

Priority Queue in Data Structure Deque in Data Structure Difference Between Linear And Non Linear Data Structures Queue Operations In Data Structure About Data Structures Data Structures Algorithms Types of Data Structures Big O Notations Introduction to Arrays Introduction to 1D-Arrays Operations on 1D-Arrays Introduction to 2D-Arrays Operations on 2D-Arrays Strings in Data Structures String Operations Application of 2D array Bubble Sort Insertion Sort Sorting Algorithms What is DFS Algorithm What Is Graph Data Structure What is the difference between Tree and Graph What is the difference between DFS and BFS Bucket Sort Dijkstra’s vs Bellman-Ford Algorithm Linear Queue Data Structure in C Stack Using Array Stack Using Linked List Recursion in Fibonacci Stack vs Array What is Skewed Binary Tree Primitive Data Structure in C Dynamic memory allocation of structure in C Application of Stack in Data Structures Binary Tree in Data Structures Heap Data Structure Recursion - Factorial and Fibonacci What is B tree what is B+ tree Huffman tree in Data Structures Insertion Sort vs Bubble Sort Adding one to the number represented an array of digits Bitwise Operators and their Important Tricks Blowfish algorithm Bubble Sort vs Selection Sort Hashing and its Applications Heap Sort vs Merge Sort Insertion Sort vs Selection Sort Merge Conflicts and ways to handle them Difference between Stack and Queue AVL tree in data structure c++ Bubble sort algorithm using Javascript Buffer overflow attack with examples Find out the area between two concentric circles Lowest common ancestor in a binary search tree Number of visible boxes putting one inside another Program to calculate the area of the circumcircle of an equilateral triangle Red-black Tree in Data Structures Strictly binary tree in Data Structures 2-3 Trees and Basic Operations on them Asynchronous advantage actor-critic (A3C) Algorithm Bubble Sort vs Heap Sort Digital Search Tree in Data Structures Minimum Spanning Tree Permutation Sort or Bogo Sort Quick Sort vs Merge Sort Boruvkas algorithm Bubble Sort vs Quick Sort Common Operations on various Data Structures Detect and Remove Loop in a Linked List How to Start Learning DSA Print kth least significant bit number Why is Binary Heap Preferred over BST for Priority Queue Bin Packing Problem Binary Tree Inorder Traversal Burning binary tree Equal Sum What is a Threaded Binary Tree? What is a full Binary Tree? Bubble Sort vs Merge Sort B+ Tree Program in Q language Deletion Operation from A B Tree Deletion Operation of the binary search tree in C++ language Does Overloading Work with Inheritance Balanced Binary Tree Binary tree deletion Binary tree insertion Cocktail Sort Comb Sort FIFO approach Operations of B Tree in C++ Language Recaman’s Sequence Tim Sort Understanding Data Processing Applications of trees in data structures Binary Tree Implementation Using Arrays Convert a Binary Tree into a Binary Search Tree Create a binary search tree Horizontal and Vertical Scaling Invert binary tree LCA of binary tree Linked List Representation of Binary Tree Optimal binary search tree in DSA Serialize and Deserialize a Binary Tree Tree terminology in Data structures Vertical Order Traversal of Binary Tree What is a Height-Balanced Tree in Data Structure Convert binary tree to a doubly linked list Fundamental of Algorithms Introduction and Implementation of Bloom Filter Optimal binary search tree using dynamic programming Right side view of binary tree Symmetric binary tree Trim a binary search tree What is a Sparse Matrix in Data Structure What is a Tree in Terms of a Graph What is the Use of Segment Trees in Data Structure What Should We Learn First Trees or Graphs in Data Structures All About Minimum Cost Spanning Trees in Data Structure Convert Binary Tree into a Threaded Binary Tree Difference between Structured and Object-Oriented Analysis FLEX (Fast Lexical Analyzer Generator) Object-Oriented Analysis and Design Sum of Nodes in a Binary Tree What are the types of Trees in Data Structure What is a 2-3 Tree in Data Structure What is a Spanning Tree in Data Structure What is an AVL Tree in Data Structure Given a Binary Tree, Check if it's balanced B Tree in Data Structure Convert Sorted List to Binary Search Tree Flattening a Linked List Given a Perfect Binary Tree, Reverse Alternate Levels Left View of Binary Tree What are Forest Trees in Data Structure Compare Balanced Binary Tree and Complete Binary Tree Diameter of a Binary Tree Given a Binary Tree Check the Zig Zag Traversal Given a Binary Tree Print the Shortest Path Given a Binary Tree Return All Root To Leaf Paths Given a Binary Tree Swap Nodes at K Height Given a Binary Tree Find Its Minimum Depth Given a Binary Tree Print the Pre Order Traversal in Recursive Given a Generate all Structurally Unique Binary Search Trees Perfect Binary Tree Threaded Binary Trees

Invert binary tree

Invert binary tree is a mirror image of a tree. It is pretty much the same compared to the only difference: its left and right children are swapped with the tree nodes. The main idea here is to traverse this yet another form of binary tree in the pre-order form. In this, the left and right subtrees are interchanged, which is also well-known for its mirror image of the input tree.

Algorithm

The algorithm for the invert binary tree is pretty basic, and we just have to follow the given steps: -

  1. Firstly, we will call the invert function for the left subtree.
  2. Then, we will call the invert function for the right subtree.
  3. After calling invert for both subtrees, we have to swap the subtrees with each other, and we are done.

Implementation

In this section, we will see the implementation of the inverted binary tree. let us proceed: -

#include <iostream>
using namespace std;
 
// Record structure to store a binary tree _nod
struct _nod
{
    int record;
    _nod *lft, *rt;
 
    _nod(int record)
    {
        this->record = record;
        this->lft = this->rt = NILLpointer;
    }
};
 
// Function to perform PO_Ord traversal on a given binary tree
void PO_Ord(_nod* root)
{
    if (root == NILLpointer) {
        return;
    }
 
    cout << root->record << " ";
    PO_Ord(root->lft);
    PO_Ord(root->rt);
}
 
// Function to invert a given binary tree using PO_Ord traversal
void invertBinaryTree(_nod* root)
{
    // base case: if the tree is empty
    if (root == NILLpointer) {
        return;
    }
 
    // swap lft subtree with rt subtree
    swap(root->lft, root->rt);
 
    // invert left subtree
    invertBinaryTree(root->lft);
 
    // invert rt subtree
    invertBinaryTree(root->rt);
}
 
int main()
{
    /* Construct the following tree
              1
            /   \
           /     \
          2       3
         / \     / \
        4   5   6   7
    */
 
    _nod* root = new _nod(1);
    root->lft = new _nod(2);
    root->rt = new _nod(3);
    root->lft->lft = new _nod(4);
    root->lft->rt = new _nod(5);
    root->rt->lft = new _nod(6);
    root->rt->rt = new _nod(7);
 
    invertBinaryTree(root);
    PO_Ord(root);
 
    return 0;
}

Output:

Invert binary tree

Example 2)

#include <iostream>
#include <queue>
using namespace std;
 
// Record structure to store a binary tree _nod
struct _nod
{
    int record;
    _nod *lft, *rt;
 
    _nod(int record)
    {
        this->record = record;
        this->lft = this->rt = NILLpointer;
    }
};
 
// Function to perform PO_Ord traversal on a given binary tree
void PO_Ord(_nod* root)
{
    if (root == NILLpointer) {
        return;
    }
 
    cout << root->record << " ";
    PO_Ord(root->lft);
    PO_Ord(root->rt);
}
 
// Iterative function to invert a given binary tree using a queue
void invertBinaryTree(_nod* root)
{
    // base case: if the tree is empty
    if (root == NILLpointer) {
        return;
    }
 
    // maintain a queue and push the root _nod
    queue<_nod*> q;
    q.push(root);
 
    // loop till queue is empty
    while (!q.empty())
    {
        // dequeue front _nod
        _nod* curr = q.front();
        q.pop();
 
        // swap the lft child with the rt child
        swap(curr->lft, curr->rt);
 
        // enqueue left child of the popped _nod
        if (curr->lft) {
            q.push(curr->lft);
        }
 
        // enqueue rt child of the popped _nod
        if (curr->rt) {
            q.push(curr->rt);
        }
    }
}
 
int main()
{
    /* Construct the following tree
              1
            /   \
           /     \
          2       3
         / \     / \
        4   5   6   7
    */
 
    _nod* root = new _nod(1);
    root->lft = new _nod(2);
    root->rt = new _nod(3);
    root->lft->lft = new _nod(4);
    root->lft->rt = new _nod(5);
    root->rt->lft = new _nod(6);
    root->rt->rt = new _nod(7);
 
    invertBinaryTree(root);
    PO_Ord(root);
 
    return 0;
}

Output:

Invert binary tree

Example 3)

#include <iostream> 
using namespace std; 


/* A _nod contains the value, left and right pointers */
struct _nod 
{ 
	int record; 
	struct _nod* lft; 
	struct _nod* rt; 
}; 


/* Creates a new _nod */
struct _nod* new_nod(int record) 
{ 
	_nod* _nod = new _nod;
	_nod->record = record; 
	_nod->lft = NILL; 
	_nod->rt = NILL; 
	
	return(_nod); 
} 


void invert(struct _nod* _nod) 
{ 
	if (_nod == NILL) 
		return; 
	else
	{ 
		struct _nod* temp; 
		
		/* recursive calls */
		invert(_nod->lft); 
		invert(_nod->rt); 
	
		/* swap the pointers in this _nod */
		temp	 = _nod->lft; 
		_nod->lft = _nod->rt; 
		_nod->rt = temp; 
	} 
} 


/* print InOrder binary tree traversal.*/
void print_tree(struct _nod* _nod) 
{ 
	if (_nod == NILL) 
		return; 
	
	print_tree(_nod->lft); 
	cout << _nod->record << " "; 
	print_tree(_nod->rt); 
} 


 
int main() 
{ 
	struct _nod *root = new_nod(2); 
	root->lft = new_nod(1); 
	root->rt = new_nod(4); 
	root->rt->lft = new_nod(3); 
	root->rt->rt = new_nod(5); 
	
	cout << "In order traversal of the constructed."
		<< " tree is" << endl; 
	print_tree(root); 
	
	/* Invert the tree */
	invert(root); 
	
	cout << endl;


	cout << "In order traversal of the inverted tree."
		<< " is \n"; 
	print_tree(root); 
	
	return 0; 
}

Output:

Invert binary tree