Data Structures Tutorial

Data Structures Tutorial Asymptotic Notation Structure and Union Array Data Structure Linked list Data Structure Type of Linked list Advantages and Disadvantages of linked list Queue Data Structure Implementation of Queue Stack Data Structure Implementation of Stack Sorting Insertion sort Quick sort Selection sort Heap sort Merge sort Bucket sort Count sort Radix sort Shell sort Tree Traversal of the binary tree Binary search tree Graph Spanning tree Linear Search Binary Search Hashing Collision Resolution Techniques

Misc Topic:

Priority Queue in Data Structure Deque in Data Structure Difference Between Linear And Non Linear Data Structures Queue Operations In Data Structure About Data Structures Data Structures Algorithms Types of Data Structures Big O Notations Introduction to Arrays Introduction to 1D-Arrays Operations on 1D-Arrays Introduction to 2D-Arrays Operations on 2D-Arrays Strings in Data Structures String Operations Application of 2D array Bubble Sort Insertion Sort Sorting Algorithms What is DFS Algorithm What Is Graph Data Structure What is the difference between Tree and Graph What is the difference between DFS and BFS Bucket Sort Dijkstra’s vs Bellman-Ford Algorithm Linear Queue Data Structure in C Stack Using Array Stack Using Linked List Recursion in Fibonacci Stack vs Array What is Skewed Binary Tree Primitive Data Structure in C Dynamic memory allocation of structure in C Application of Stack in Data Structures Binary Tree in Data Structures Heap Data Structure Recursion - Factorial and Fibonacci What is B tree what is B+ tree Huffman tree in Data Structures Insertion Sort vs Bubble Sort Adding one to the number represented an array of digits Bitwise Operators and their Important Tricks Blowfish algorithm Bubble Sort vs Selection Sort Hashing and its Applications Heap Sort vs Merge Sort Insertion Sort vs Selection Sort Merge Conflicts and ways to handle them Difference between Stack and Queue AVL tree in data structure c++ Bubble sort algorithm using Javascript Buffer overflow attack with examples Find out the area between two concentric circles Lowest common ancestor in a binary search tree Number of visible boxes putting one inside another Program to calculate the area of the circumcircle of an equilateral triangle Red-black Tree in Data Structures Strictly binary tree in Data Structures 2-3 Trees and Basic Operations on them Asynchronous advantage actor-critic (A3C) Algorithm Bubble Sort vs Heap Sort Digital Search Tree in Data Structures Minimum Spanning Tree Permutation Sort or Bogo Sort Quick Sort vs Merge Sort Boruvkas algorithm Bubble Sort vs Quick Sort Common Operations on various Data Structures Detect and Remove Loop in a Linked List How to Start Learning DSA Print kth least significant bit number Why is Binary Heap Preferred over BST for Priority Queue Bin Packing Problem Binary Tree Inorder Traversal Burning binary tree Equal Sum What is a Threaded Binary Tree? What is a full Binary Tree? Bubble Sort vs Merge Sort B+ Tree Program in Q language Deletion Operation from A B Tree Deletion Operation of the binary search tree in C++ language Does Overloading Work with Inheritance Balanced Binary Tree Binary tree deletion Binary tree insertion Cocktail Sort Comb Sort FIFO approach Operations of B Tree in C++ Language Recaman’s Sequence Tim Sort Understanding Data Processing Applications of trees in data structures Binary Tree Implementation Using Arrays Convert a Binary Tree into a Binary Search Tree Create a binary search tree Horizontal and Vertical Scaling Invert binary tree LCA of binary tree Linked List Representation of Binary Tree Optimal binary search tree in DSA Serialize and Deserialize a Binary Tree Tree terminology in Data structures Vertical Order Traversal of Binary Tree What is a Height-Balanced Tree in Data Structure Convert binary tree to a doubly linked list Fundamental of Algorithms Introduction and Implementation of Bloom Filter Optimal binary search tree using dynamic programming Right side view of binary tree Symmetric binary tree Trim a binary search tree What is a Sparse Matrix in Data Structure What is a Tree in Terms of a Graph What is the Use of Segment Trees in Data Structure What Should We Learn First Trees or Graphs in Data Structures All About Minimum Cost Spanning Trees in Data Structure Convert Binary Tree into a Threaded Binary Tree Difference between Structured and Object-Oriented Analysis FLEX (Fast Lexical Analyzer Generator) Object-Oriented Analysis and Design Sum of Nodes in a Binary Tree What are the types of Trees in Data Structure What is a 2-3 Tree in Data Structure What is a Spanning Tree in Data Structure What is an AVL Tree in Data Structure Given a Binary Tree, Check if it's balanced

Queue operations in Data Structure

Queue - Queue is a linear data structure or first in first out data structure means the first element added in the queue will be removed first and the last element will be removed in last. Its behavior is defined by the values stored and operations performed on it.

Queue Operations In Data Structure

Applications of Queue Data Structure:

  1. Graph Traversal Algorithm (Breadth Frist Search),
  2. CPU Scheduling,
  3. Disk Scheduling, etc.

Let us see some primitive operations performed on it with examples:

  1. enqueue() – Enqueue method is used to insert element at end in a queue
  2. dequeue() – Dequeue method removes the first element of the queue
  3. isFull() – isFull method is used to check whether the queue is full or not
  4. isEmpty() – isEmpty method is used to check whether the queue is empty or not
  5. size() – Size method is used to find the number of elements present in the queue
  6. front() – Front method is used to find the first element present in the queue

C++ Code:

// C++ Program to perform operations on queue

#include <iostream>

using namespace std;

// Declaring all the operations performed on Queue

// Function of type integer will return an integer value and functions of types void will not return any value

void enqueue(int value);

void dequeue();

int isFull();

int isEmpty();

int front();

int size();

int myQueue[10]; // Creating a array of size 10 and will make it behave like queue

// n is the size of the queue and front_index and rear_index will point to front and rear element of the queue respectively

int front_index = -1, rear_index = -1, n = 10;

int main()

{

    int x;

    x = isEmpty(); // X will store the value returned by the isEmpty Function

    // "Queue is Empty!" will be printed if x is equal to 1 or "Queue is not Empty!" will be printed if x is equal to 0

    x ? cout << "Queue is Empty!" << endl : cout << "Queue is not Empty!";

    // Inserting elements in the queue using the enqueue function

    enqueue(30);

    enqueue(44);

    enqueue(90);

    enqueue(53);

    enqueue(12);

    enqueue(99);

    // Checking how many elements are there in the queue

    x = size();

    cout << "Number of elements in the queue is " << x << endl;

    x = isFull();

    // "Queue is Full!" will be printed if x is equal to 1 or "Queue is not Full!" will be printed if x is equal to 0

    x ? cout << "Queue is Full!" << endl : cout << "Queue is not Full!" << endl;

    x = isEmpty();

    // "Queue is Empty!" will be printed if x is equal to 1 or "Queue is not Empty!" will be printed if x is equal to 0

    x ? cout << "Queue is Empty!" << endl : cout << "Queue is not Empty!" << endl;

    x = front();

    // The first statement of the below ternary operator will be executed if the x is not equal to 0

    x ? cout << "Front element of the queue = " << x << endl : cout << "No front element. The queue is empty!" << endl;

    // Deleting and printing all the elements of the queue using the dequeue function

    cout << "Elements of queue are: ";

    do

    {

        dequeue();

    } while (front_index != -1);

    cout << endl;

    // After deleting all the value from the queue, trying to print front element.

    x = front();

    x ? cout << "Front element of the queue = " << x << endl : cout << "No front element. The queue is empty!" << endl;

}

// Function to insert element in the queue

void enqueue(int value)

{

    if (rear_index == n - 1) // Condition to check whether the queue is Full or not

    {

        cout << "Overflow!" << endl;

        return;

    }

    if (front_index == -1)

    {

        front_index = 0;

        rear_index = 0;

    }

    else

    {

        rear_index = rear_index + 1;

    }

    myQueue[rear_index] = value; // Adding the value after increasing the rear_index by 1

}

// Function to delete elements from the Queue. Actually, we not delete the elements but we just forget those elements

void dequeue()

{

    int deleted_ele;

    if (front_index == -1) // Condition to check whether the queue is empty or not

    {

        cout << "Underflow!";

        return;

    }

    deleted_ele = myQueue[front_index]; // Storing the value of the front element of the queue

    cout << deleted_ele << " ";

    /*In the below statements we are increasing the front_index by 1 and if we are deleting the last element,

    we are making rear_index and front_index equal to -1 */

    if (front_index == rear_index)

    {

        front_index = -1;

        rear_index = -1;

    }

    else

    {

        front_index++;

    }

}

// Function to check whether the Queue if Full or not

int isFull()

{

    // The function will return 1 if the queue is full otherwise it will return 0

    if (front_index == 0 && rear_index == n - 1) // Condition of FULL queue

    {

        return 1;

    }

    return 0;

}

// function to check whether the queue is empty or not

int isEmpty()

{

    // The function will return 1 if the queue is empty otherwise it will return 0

    if (front_index == -1) // Condition of empty queue

    {

        return 1;

    }

    return 0;

}

// Function to find the number of elements in the queue

int size()

{

    if (front_index == -1) // It will return zero if the queue is empty

    {

        return 0;

    }

    return rear_index - front_index + 1; // It will return the number of elements present in the list

}

// Function to print the front element

int front()

{

    // It will return 0 when the queue is empty otherwise the front element

    if (front_index == -1)

    {

        return 0;

    }

    return myQueue[front_index];

}

The output of the above Program:

Queue is Empty!

Number of elements in the queue is 6

Queue is not Full!

Queue is not Empty!

Front element of the queue = 30

Elements of queue are: 30 44 90 53 12 99

No front element. The queue is empty!

C Code:

// C program to implement the queue operations

#include <stdio.h>

/* Declaring the operations performed on the Queue. The functions of type int will return an integer value and functions of type

void will not return any value. */

void enqueue(int value);

void dequeue();

int isFull();

int isEmpty();

int front_ele();

int size();

int myQueue[10]; // Declaring the queue of size 10

// n is the size of the queue and front and rear will point to front and rear element of the queue respectively

int front = -1, rear = -1, n = 10;

int main()

{

    int x;

    x = isEmpty(); // X will store the value returned by the isEmpty Function

    // "Queue is Empty!" will be printed if x is equal to 1 or "Queue is not Empty!" will be printed if x is equal to 0

    x ? printf("Queue is Empty!\n") : printf("Queue is not Empty!\n");

    // Inserting elements in the queue using the enqueue function

    enqueue(13);

    enqueue(22);

    enqueue(99);

    enqueue(35);

    enqueue(124);

    enqueue(11);

    // Checking how many elements are there in the queue

    x = size();

    printf("The number of elements present in the queue = %d\n", x);

    x = isFull();

    // "Queue is Full!" will be printed if x is equal to 1 or "Queue is not Full!" will be printed if x is equal to 0

    x ? printf("Queue is Full!\n") : printf("Queue is not Full!\n");

    x = isEmpty();

    // "Queue is Empty!" will be printed if x is equal to 1 or "Queue is not Empty!" will be printed if x is equal to 0

    x ? printf("Queue is Empty!\n") : printf("Queue is not Empty!\n");

    x = front_ele();

    // The first statement of the below ternary operator will be executed if the x is not equal to 0

    x ? printf("Front element of the queue = %d\n", x) : printf("No front element. The queue is empty!\n");

    // Deleting and printing all the elements of the queue using the dequeue function

    printf("Elements of queue are: ");

    do

    {

        dequeue();

    } while (front != -1);

    printf("\n");

    // After deleting all the value from the queue, trying to print front element.

    x = front_ele();

    x ? printf("Front element of the queue = %d\n", x) : printf("No front element. The queue is empty!\n");

}

// Function to insert element in the queue

void enqueue(int value)

{

    if (rear == n - 1) // Condition to check whether the queue is Full or not

    {

        printf("Overflow!\n");

        return;

    }

    if (front == -1)

    {

        front = 0;

        rear = 0;

    }

    else

    {

        rear = rear + 1;

    }

    myQueue[rear] = value; // Adding the value after increasing the rear_index by 1

}

// Function to delete element from the queue

void dequeue()

{

    int deleted_ele;

    if (front == -1) // Condition to check whether the queue is empty or not

    {

        printf("Underflow\n");

        return;

    }

    deleted_ele = myQueue[front]; // Storing the value of the front element of the queue

    printf("%d ", deleted_ele);

    /*In the below statements we are increasing the front_index by 1 and if we are deleting the last element,

    we are making rear_index and front_index equal to -1 */

    if (front == rear)

    {

        front = -1;

        rear = -1;

    }

    else

    {

        front++;

    }

}

// Function to check whether the Queue if Full or not

int isFull()

{

    // The function will return 1 if the queue is full otherwise it will return 0

    if (front == 0 && rear == n - 1) // Condition of FULL queue

    {

        return 1;

    }

    return 0;

}

// function to check whether the queue is empty or not

int isEmpty()

{

    // The function will return 1 if the queue is empty otherwise it will return 0

    if (front == -1) // Condition of empty queue

    {

        return 1;

    }

    return 0;

}

// Function to find the number of elements in the queue

int size()

{

    if (front == -1) // It will return zero if the queue is empty

    {

        return 0;

    }

    return rear - front + 1; // It will return the number of elements present in the list

}

// Function to print the front element

int front_ele()

{

    // It will return 0 when the queue is empty otherwise the front element

    if (front == -1)

    {

        return 0;

    }

    return myQueue[front];

}

The output of the above program:

Queue is Empty!

The number of elements present in the queue = 6

Queue is not Full!

Queue is not Empty!

Front element of the queue = 13

Elements of queue are: 13 22 99 35 124 11

No front element. The queue is empty!



ADVERTISEMENT
ADVERTISEMENT