Data Structures Tutorial

Data Structures Tutorial Asymptotic Notation Structure and Union Array Data Structure Linked list Data Structure Type of Linked list Advantages and Disadvantages of linked list Queue Data Structure Implementation of Queue Stack Data Structure Implementation of Stack Sorting Insertion sort Quick sort Selection sort Heap sort Merge sort Bucket sort Count sort Radix sort Shell sort Tree Traversal of the binary tree Binary search tree Graph Spanning tree Linear Search Binary Search Hashing Collision Resolution Techniques

Misc Topic:

Priority Queue in Data Structure Deque in Data Structure Difference Between Linear And Non Linear Data Structures Queue Operations In Data Structure About Data Structures Data Structures Algorithms Types of Data Structures Big O Notations Introduction to Arrays Introduction to 1D-Arrays Operations on 1D-Arrays Introduction to 2D-Arrays Operations on 2D-Arrays Strings in Data Structures String Operations Application of 2D array Bubble Sort Insertion Sort Sorting Algorithms What is DFS Algorithm What Is Graph Data Structure What is the difference between Tree and Graph What is the difference between DFS and BFS Bucket Sort Dijkstra’s vs Bellman-Ford Algorithm Linear Queue Data Structure in C Stack Using Array Stack Using Linked List Recursion in Fibonacci Stack vs Array What is Skewed Binary Tree Primitive Data Structure in C Dynamic memory allocation of structure in C Application of Stack in Data Structures Binary Tree in Data Structures Heap Data Structure Recursion - Factorial and Fibonacci What is B tree what is B+ tree Huffman tree in Data Structures Insertion Sort vs Bubble Sort Adding one to the number represented an array of digits Bitwise Operators and their Important Tricks Blowfish algorithm Bubble Sort vs Selection Sort Hashing and its Applications Heap Sort vs Merge Sort Insertion Sort vs Selection Sort Merge Conflicts and ways to handle them Difference between Stack and Queue AVL tree in data structure c++ Bubble sort algorithm using Javascript Buffer overflow attack with examples Find out the area between two concentric circles Lowest common ancestor in a binary search tree Number of visible boxes putting one inside another Program to calculate the area of the circumcircle of an equilateral triangle Red-black Tree in Data Structures Strictly binary tree in Data Structures 2-3 Trees and Basic Operations on them Asynchronous advantage actor-critic (A3C) Algorithm Bubble Sort vs Heap Sort Digital Search Tree in Data Structures Minimum Spanning Tree Permutation Sort or Bogo Sort Quick Sort vs Merge Sort Boruvkas algorithm Bubble Sort vs Quick Sort Common Operations on various Data Structures Detect and Remove Loop in a Linked List How to Start Learning DSA Print kth least significant bit number Why is Binary Heap Preferred over BST for Priority Queue Bin Packing Problem Binary Tree Inorder Traversal Burning binary tree Equal Sum What is a Threaded Binary Tree? What is a full Binary Tree? Bubble Sort vs Merge Sort B+ Tree Program in Q language Deletion Operation from A B Tree Deletion Operation of the binary search tree in C++ language Does Overloading Work with Inheritance Balanced Binary Tree Binary tree deletion Binary tree insertion Cocktail Sort Comb Sort FIFO approach Operations of B Tree in C++ Language Recaman’s Sequence Tim Sort Understanding Data Processing Applications of trees in data structures Binary Tree Implementation Using Arrays Convert a Binary Tree into a Binary Search Tree Create a binary search tree Horizontal and Vertical Scaling Invert binary tree LCA of binary tree Linked List Representation of Binary Tree Optimal binary search tree in DSA Serialize and Deserialize a Binary Tree Tree terminology in Data structures Vertical Order Traversal of Binary Tree What is a Height-Balanced Tree in Data Structure Convert binary tree to a doubly linked list Fundamental of Algorithms Introduction and Implementation of Bloom Filter Optimal binary search tree using dynamic programming Right side view of binary tree Symmetric binary tree Trim a binary search tree What is a Sparse Matrix in Data Structure What is a Tree in Terms of a Graph What is the Use of Segment Trees in Data Structure What Should We Learn First Trees or Graphs in Data Structures All About Minimum Cost Spanning Trees in Data Structure Convert Binary Tree into a Threaded Binary Tree Difference between Structured and Object-Oriented Analysis FLEX (Fast Lexical Analyzer Generator) Object-Oriented Analysis and Design Sum of Nodes in a Binary Tree What are the types of Trees in Data Structure What is a 2-3 Tree in Data Structure What is a Spanning Tree in Data Structure What is an AVL Tree in Data Structure Given a Binary Tree, Check if it's balanced B Tree in Data Structure Convert Sorted List to Binary Search Tree Flattening a Linked List Given a Perfect Binary Tree, Reverse Alternate Levels Left View of Binary Tree What are Forest Trees in Data Structure Compare Balanced Binary Tree and Complete Binary Tree Diameter of a Binary Tree Given a Binary Tree Check the Zig Zag Traversal Given a Binary Tree Print the Shortest Path Given a Binary Tree Return All Root To Leaf Paths Given a Binary Tree Swap Nodes at K Height Given a Binary Tree Find Its Minimum Depth Given a Binary Tree Print the Pre Order Traversal in Recursive Given a Generate all Structurally Unique Binary Search Trees Perfect Binary Tree Threaded Binary Trees Function to Create a Copy of Binary Search Tree Function to Delete a Leaf Node from a Binary Tree Function to Insert a Node in a Binary Search Tree Given Two Binary Trees, Check if it is Symmetric A Full Binary Tree with n Nodes Applications of Different Linked Lists in Data Structure B+ Tree in Data Structure Construction of B tree in Data Structure Difference between B-tree and Binary Tree Finding Rank in a Binary Search Tree Finding the Maximum Element in a Binary Tree Finding the Minimum and Maximum Value of a Binary Tree Finding the Sum of All Paths in a Binary Tree Time Complexity of Selection Sort in Data Structure How to get Better in Data Structures and Algorithms Binary Tree Leaf Nodes Classification of Data Structure Difference between Static and Dynamic Data Structure Find the Union and Intersection of the Binary Search Tree Find the Vertical Next in a Binary Tree Finding a Deadlock in a Binary Search Tree Finding all Node of k Distance in a Binary Tree Finding Diagonal Sum in a Binary Tree Finding Diagonal Traversal of The Binary Tree Finding In-Order Successor Binary Tree Finding the gcd of Each Sibling of the Binary Tree Greedy Algorithm in Data Structure How to Calculate Space Complexity in Data Structure How to find missing numbers in an Array Kth Ancestor Node of Binary Tree Minimum Depth Binary Tree Mirror Binary Tree in Data Structure Red-Black Tree Insertion Binary Tree to Mirror Image in Data Structure Calculating the Height of a Binary Search Tree in Data Structure Characteristics of Binary Tree in Data Structure Create a Complete Binary Tree from its Linked List Field in Tree Data Structure Find a Specified Element in a binary Search Tree Find Descendant in Tree Data Structure Find Siblings in a Binary Tree Given as an Array Find the Height of a Node in a Binary Tree Find the Second-Largest Element in a Binary Tree Find the Successor Predecessor of a Binary Search Tree Forest of a Tree in Data Structure In Order Traversal of Threaded Binary Tree Introduction to Huffman Coding Limitations of a Binary Search Tree Link State Routing Algorithm in Data Structure Map Reduce Algorithm for Binary Search Tree in Data Structure Non-Binary Tree in Data Structure Quadratic Probing Example in Hashing Scope and Lifetime of Variables in Data Structure Separate Chaining in Data Structure What is Dynamic Data Structure Separate Chaining vs Open Addressing Time and Space Complexity of Linear Data Structures Abstract Data Types in Data Structures Binary Tree to Single Linked List Count the Number of Nodes in the Binary Tree Count Total No. of Ancestors in a Binary Search Tree Elements of Dynamic Programming in Data Structures Find cost of tree with prims algorithm in data structures Find Preorder Successor in a Threaded Binary Tree Find Prime Nodes Sum Count in Non-Binary Tree Find the Right Sibling of a Binary Tree with Parent Pointers Find the Width of the Binary Search Tree Forest trees in Data Structures Free Tree in Data Structures Frequently asked questions in Tree Data Structures Infix, Postfix and Prefix Conversion Time Complexity of Fibonacci Series What is Weighted Graph in Data Structure What is the Advantage of Linear Search?

Sorting Algorithms in Data Structures

A sorting algorithm is used to organize the elements of an array or list. Sorting an array, for example.

Unsorted array

572941

Sorted array

124579

We're sorting the array in ascending order right now.

This procedure may be completed using a variety of sorting algorithms. And, depending on the situation, we may apply any algorithm.

Various Sorting Algorithms

  • Bubble Sort
  • Selection Sort
  • Insertion Sort
  • Merge Sort
  • Quick Sort
  • Counting Sort
  • Radix Sort
  • Bucket Sort
  • Heap Sort
  • Shell Sort
  • Comb Sort

Sorting Algorithms' Complexity

The time complexity and space difficulty of any sorting algorithm influence the method's efficiency.

  1. Time Complexity: The time it takes an algorithm to finish its execution in relation to the amount of the input is referred to as time complexity. It can be expressed in a variety of ways:
    • Big-O notation (O)
    • Omega notation (Ω)
    • Theta notation (θ)
  2. Space Complexity: The entire amount of memory utilised by the method for

    A sorting algorithm is used to organize the elements of an array or list. Sorting an array, for example.

    Unsorted array

    572941

    Sorted array

    124579

    We're sorting the array in ascending order right now.

    This procedure may be completed using a variety of sorting algorithms. And, depending on the situation, we may apply any algorithm.

    Various Sorting Algorithms

    • Bubble Sort
    • Selection Sort
    • Insertion Sort
    • Merge Sort
    • Quick Sort
    • Counting Sort
    • Radix Sort
    • Bucket Sort
    • Heap Sort
    • Shell Sort
    • Comb Sort

    Sorting Algorithms' Complexity

    The time complexity and space difficulty of any sorting algorithm influence the method's efficiency.

    1. Time Complexity: The time it takes an algorithm to finish its execution in relation to the amount of the input is referred to as time complexity. It can be expressed in a variety of ways:
      • Big-O notation (O)
      • Omega notation (Ω)
      • Theta notation (θ)
    2. Space Complexity: The entire amount of memory utilised by the method for a complete execution is referred to as space complexity. Both the extra memory and the input are included.

    Auxiliary memory is the space used up by the method in addition to the input data. When determining the space complexity of an algorithm, auxiliary memory is usually taken into account.

    Let's look at the complexity of several sorting methods.

    Sorting AlgorithmsTime Complexity BestTime Complexity AverageTime Complexity WorstSpace complexity
         
    Bubble Sortnn2n21
    Selection Sortn2n2n21
    Insertion Sortnn2n21
    Merge Sortn log nn log nn log nN
    Quick Sortn log nn2nlog nlog n
    Counting Sortn + kn + kn + kmax
    Radix Sortn + kn + kn + kmax
    Bucket Sortn + kn2nmax
    Heap Sortn log nn log nn log n1
    Shell Sortn log nn2n log nN
    Comb Sortn log nn2/2pn21

    Sorting Algorithm Stability

    When two or more items with the same value keep the same relative positions after sorting, the sorting method is deemed stable.

    In the figure below, for example, there are two objects with the identical value of 3. The two places of 3 may or may not be maintained depending on the stability of the sorting algorithm.

    Unsorted array

    572942

    After unstable sorting there are 2 possibilities

    224579
    224579

    However, there is always one alternative following a stable sorting algorithm in which the locations are preserved as in the original array.

    Unsorted array

    572942

    Sorted array

    224579

    This table displays the consistency of several sorting algorithms.

    Sorting AlgorithmsStability
      
    Bubble SortYes
    Selection SortNo
    Insertion SortYes
    Merge SortYes
    Quick SortNo
    Counting SortYes
    Radix SortYes
    Bucket SortYes
    Heap SortNo
    Shell SortNo
    Comb SortNo
    a complete execution is referred to as space complexity. Both the extra memory and the input are included.

Auxiliary memory is the space used up by the method in addition to the input data. When determining the space complexity of an algorithm, auxiliary memory is usually taken into account.

Let's look at the complexity of several sorting methods.

Sorting AlgorithmsTime Complexity BestTime Complexity AverageTime Complexity WorstSpace complexity
     
Bubble Sortnn2n21
Selection Sortn2n2n21
Insertion Sortnn2n21
Merge Sortn log nn log nn log nN
Quick Sortn log nn2nlog nlog n
Counting Sortn + kn + kn + kmax
Radix Sortn + kn + kn + kmax
Bucket Sortn + kn2nmax
Heap Sortn log nn log nn log n1
Shell Sortn log nn2n log nN
Comb Sortn log nn2/2pn21

Sorting Algorithm Stability

When two or more items with the same value keep the same relative positions after sorting, the sorting method is deemed stable.

In the figure below, for example, there are two objects with the identical value of 3. The two places of 3 may or may not be maintained depending on the stability of the sorting algorithm.

Unsorted array

572942

After unstable sorting there are 2 possibilities

224579
224579

However, there is always one alternative following a stable sorting algorithm in which the locations are preserved as in the original array.

Unsorted array

572942

Sorted array

224579

This table displays the consistency of several sorting algorithms.

Sorting AlgorithmsStability
  
Bubble SortYes
Selection SortNo
Insertion SortYes
Merge SortYes
Quick SortNo
Counting SortYes
Radix SortYes
Bucket SortYes
Heap SortNo
Shell SortNo
Comb SortNo