C++ Tutorial Index

C++ Tutorial C++ History C++ Installation C++ First Program C++ cin and cout C++ Data type C++ Variable C++ operator C++ Keywords

C++ Control Statements

C++ If C++ Nested if C++ If-else C++ If-else-if C++ Switch C++ Break C++ Continue C++ Goto C++ For loop C++ While loop C++ Do while loop

C++ Functions

C++ Call by Value C++ Call by Reference C++ Recursion Function C++ Inline function C++ Friend function

C++ Arrays

Single dimension array Two dimension array

C++ Strings

C++ Strings

C++ Inheritance

C++ Inheritance Single level Inheritance Multilevel Inheritance Multiple Inheritance Hierarchical Inheritance Hybrid Inheritance

C++ Polymorphism

C++ Polymorphism C++ Overloading C++ Overriding C++ Virtual Function

C++ Pointers

C++ Pointers C++ this pointer

C++ Exception Handling

C++ Exception Handling

C++ Constructors

C++ Constructors Default Constructor Parameterize Constructor Copy constructor Constructor Overloading Destructor

C++ File Handling

C++ File Handling C++ Writing to file C++ Reading file C++ Close file

Miscellaneous

C Vs C++ C++ Comments C++ Data Abstraction C++ Identifier C++ Memory Management C++ Storage Classes C++ Void Pointer C++ Array To Function C++ Expressions C++ Features C++ Interfaces C++ Encapsulation std::min in C++ External merge sort in C++ Remove duplicates from sorted array in C++ Precision of floating point numbers Using these functions floor(), ceil(), trunc(), round() and setprecision() in C++ C++ References C++ Friend Functions C++ Mutable keyword Unary Operators in C++ Initialize Array of objects with parameterized constructors in C++ Differences between #define & const in C/C++ C++ Program to Implement Shell Sort C++ Program to Implement Merge Sort Storage Classes in C Vector resize() in C++ Passing by Reference Vs. Passing by the pointer in C++ Free vs delete() in C++ goto statement in C and C++ C++ program to read string using cin.getline() C++ String Concatenation Heap Sort in C++ Swap numbers in C++ Input Iterators in C++ Fibonacci Series in C++ C ++ Program: Alphabet Triangle and Number Triangle C++ Program: Matrix Multiplication C++ Program to Print Fibonacci Triangle Stack in C++ Maps in C++ Queue in C++ C++ Bitset C++ Algorithms Priority Queue in C++ C++ Multimap C++ Deque Function Pointer in C++ Sizeof() Operators in C++ C++ array of Pointers free() Vs delete in C Timsort Implementation Using C++ CPP Templates C++ Aggregation C++ Enumeration C++ Math Functions C++ Object Class C++ Queue Initialize Vector in C++ Vector in C++ C++ STL Components Function overloading in C++ C++ Maximum Index Problem C++ find missing in the second array C++ Program to find the product array puzzle C++ Program To Find Largest Subarray With 0 Sum C++ Program To Move All Zeros To The End Of The Array C++ Program to find the element that occurs once C++ Program to find the largest number formed from an array Constructor Vs Destructor C++ Namespaces C++ OOPs Concept C++ Static C++ Structs C++ Try-Catch C++ User Defined Exceptions C++ Virtual Destructor C++ vs C# Malloc() and new in C++ Palindrome Number Program in C++ Snake Code in C++ Splitting a string in C++ Structure Vs Class in C++ Virtual Function Vs Pure Virtual Function C++ Bidirectional Iterators C++ Forward Iterators C++ Iterators C++ Output Iterators C++ Range-based For Loop Converting string into integer in C++ LCM Program in C++ Type conversion in C++ Add two numbers using the function in C++ Advantage and disadvantage friend function C++ Armstrong Number Program in C++ ATM machine program in C++ using functions Binary to Decimal in C++ Bit Manipulation in C++ C++ Constructor C++ Dijkstra Algorithm Using the Priority Queue C++ int into String C++ Signal Handling Decimal to Binary in C++ Decimal to Hexadecimal in C++ Decimal to Octal in C++ Factorial Program in C++ Function in C++ Hexadecimal to Decimal in C++ Octal to Decimal in C++ Reverse a Number in C++ Structure Vs Class in C++ C++ Forward Iterators C++ Output Iterators C++ Prime number program Char Array to String in C++ Constructor Overloading in C++ Default arguments in C++ Different Ways to Compare Strings in C++ Dynamic Binding in C++ Program to convert infix to postfix expression in C++ SET Data Structure in C++ Upcasting and Downcasting in C++ Reverse an Array in C++ Fast Input and Output in C++ Delete Operator in C++ Copy elision in C++ C++ Date and Time C++ Bitwise XOR Operator Array of sets in C++ Binary Operator Overloading in C++ Binary Search in C++ Implementing the sets without C++ STL containers Scope Resolution Operator in C++ Smart pointers in C++ Types of polymorphism in C++ Exception Handling in C++ vs Java Const Keyword in C++ Type Casting in C++ Static keyword in C++ vs Java Inheritance in C++ vs Java How to concatenate two strings in C++ Programs to Print Pyramid Patterns in C++ swap() function in C++ Structure of C++ Program Stringstream in C++ and its applications rand() and srand() in C / C++ C++ Ternary Operator C++ Scope of Variables While Loop Examples in C++ Star pattern in C++ using For Loops For Loop Examples in C++ Do-While Loop Examples in C++ Top 5 IDEs for C++ That You Should Try Once Assertions in C/C++ C++ Convert Int to String Continue in C++ While loop Diamond Pattern in C++ using For Loop How to Reverse a String in C++ using Do-While Loop How to Reverse a String in C++ using For Loop How to Reverse a String in C++ using While Loop Infinite loop in C++ Loops in C++ Returning Multiple Values from a Function using Tuple and Pair in C++ wcscpy(), wcslen(), wcscmp() Functions in C++

Timsort Implementation Using C++

Timsort Implementation Using C++

The Timsort is a stable sorting algorithm that uses the idea of merge sort and insertion sort. It can also be called a hybrid algorithm of insertion and merge sort.  It is widely used in Java, Python, C, and C++ inbuilt sort algorithms. The idea behind this algorithm is to sort small chunks using insertion sort and then merge all the big chunks using the merge function of the merge sort algorithm.

Working

In this algorithm, the array is divided into small chunks. The chunks are known as RUN. Each RUN is taken and sorted using the insertion sort technique. After all the RUN are sorted, these are merged using the merge function. There may be a case where the size of the array can be less than RUN. In such a case, the array is sorted by the insertion sort technique. Usually, the RUN chunk varies from 32 to 64, depending on the size of the array. The merge function will only merge if the subarray chunk has the size of powers of 2.

The advantage of using insertion sort is because insertion sort works fine for the array with a small size.

Time complexity -

Best case - Omega(n)

Average case - O(nlogn)

Worst case - O(nlogn)

C++ code -

 #include<bits/stdc++.h>
 using namespace std;
 const int RUN = 32;  // Initialising the RUN to get chunks
 void insertionSort(int arr[], int left, int right) // Implementing insertion sort for RUN size chunks
 {
             for (int i = left + 1; i <= right; i++)
             {
                         int t = arr[i];
                         int j = i - 1;
                         while (j >= left &&  t < arr[j])
                         {
                                     arr[j+1] = arr[j--];
                         }
                         arr[j+1] = t;
             }
 }
 void merge(int arr[], int l, int m, int r) // using the merge function, the sorted chunks of size 32 are merged into one
 {
             int len1 = m - l + 1, len2 = r - m;
             int left[len1], right[len2]; 
             for (int i = 0; i < len1; i++)
                         left[i] = arr[l + i]; // Filling left array
             for (int i = 0; i < len2; i++)
                         right[i] = arr[m + 1 + i];  // Filling right array
             int i = 0;
             int j = 0;
             int k = l;
             while (i < len1 && j < len2)  // Iterate into both arrays left and right
             {
                         if (left[i] <= right[j]) // IF element in left is less then increment i by pushing into larger array
                         {
                                     arr[k] = left[i];
                                     i++;
                         }
                         else
                         {
                                     arr[k] = right[j];  // Element in right array is greater increment j
                                     j++;
                         }
                         k++;
             }
             while (i < len1) // This loop copies remaining element in left array
             {
                         arr[k] = left[i];
                         k++;
                         i++;
             }
             while (j < len2) // This loop copies remaining element in right array
             {
                         arr[k] = right[j];
                         k++;
                         j++;
             }
 }
 void timSortAlgo(int arr[], int n)
 {
             for (int i = 0; i < n; i+=RUN)           
 insertionSort(arr, i, min((i+31), (n-1)));  //Call insertionSort()
             for (int s = RUN; s < n; s = 2*s)     // Start merging from size RUN (or 32). It will continue upto 2*RUN
             {
                         // pick starting point of  left sub array. We  are going to merge  arr[left..left+size-1]
                         // and arr[left+size, left+2*size-1]
                         // After every merge, we
                         // increase left by 2*size
                         for (int left = 0; left < n;
                                                                                     left += 2*s)
                         {
                                     int mid = left + s - 1;             // find ending point of  left sub array  mid+1 is starting point  of right sub array
                                     int right = min((left + 2*s - 1), (n-1));
                                     merge(arr, left, mid, right); // merge sub array arr[left.....mid] &  arr[mid+1....right]
                         }
             }
 }
 void printArray(int arr[], int n)
 {
             for (int i = 0; i < n; i++)
                         cout << arr[i] << " ";
             cout << endl;
 }
 // Main function to implement timsort algorithm
 int main()
 {
             int arr[] = {-2, 7, 15, -14, 0, 15, 0, 7, -7,
                                                             -4, -13, 5, 8, -14, 12};
             int n = sizeof(arr)/sizeof(arr[0]);
 cout << "The Original array- ";
             printArray(arr, n);
             // calling the timsortAlgo function to sort array
             timSortAlgo(arr, n);
             cout<<"After Sorting Array Using TimSort Algorithm- ";
             printArray(arr, n);  // Calling print function
             return 0;
 } 



ADVERTISEMENT
ADVERTISEMENT