Data Structures Tutorial

Data Structures Tutorial Asymptotic Notation Structure and Union Array Data Structure Linked list Data Structure Type of Linked list Advantages and Disadvantages of linked list Queue Data Structure Implementation of Queue Stack Data Structure Implementation of Stack Sorting Insertion sort Quick sort Selection sort Heap sort Merge sort Bucket sort Count sort Radix sort Shell sort Tree Traversal of the binary tree Binary search tree Graph Spanning tree Linear Search Binary Search Hashing Collision Resolution Techniques

Misc Topic:

Priority Queue in Data Structure Deque in Data Structure Difference Between Linear And Non Linear Data Structures Queue Operations In Data Structure About Data Structures Data Structures Algorithms Types of Data Structures Big O Notations Introduction to Arrays Introduction to 1D-Arrays Operations on 1D-Arrays Introduction to 2D-Arrays Operations on 2D-Arrays Strings in Data Structures String Operations Application of 2D array Bubble Sort Insertion Sort Sorting Algorithms What is DFS Algorithm What Is Graph Data Structure What is the difference between Tree and Graph What is the difference between DFS and BFS Bucket Sort Dijkstra’s vs Bellman-Ford Algorithm Linear Queue Data Structure in C Stack Using Array Stack Using Linked List Recursion in Fibonacci Stack vs Array What is Skewed Binary Tree Primitive Data Structure in C Dynamic memory allocation of structure in C Application of Stack in Data Structures Binary Tree in Data Structures Heap Data Structure Recursion - Factorial and Fibonacci What is B tree what is B+ tree Huffman tree in Data Structures Insertion Sort vs Bubble Sort Adding one to the number represented an array of digits Bitwise Operators and their Important Tricks Blowfish algorithm Bubble Sort vs Selection Sort Hashing and its Applications Heap Sort vs Merge Sort Insertion Sort vs Selection Sort Merge Conflicts and ways to handle them Difference between Stack and Queue AVL tree in data structure c++ Bubble sort algorithm using Javascript Buffer overflow attack with examples Find out the area between two concentric circles Lowest common ancestor in a binary search tree Number of visible boxes putting one inside another Program to calculate the area of the circumcircle of an equilateral triangle Red-black Tree in Data Structures Strictly binary tree in Data Structures 2-3 Trees and Basic Operations on them Asynchronous advantage actor-critic (A3C) Algorithm Bubble Sort vs Heap Sort Digital Search Tree in Data Structures Minimum Spanning Tree Permutation Sort or Bogo Sort Quick Sort vs Merge Sort Boruvkas algorithm Bubble Sort vs Quick Sort Common Operations on various Data Structures Detect and Remove Loop in a Linked List How to Start Learning DSA Print kth least significant bit number Why is Binary Heap Preferred over BST for Priority Queue Bin Packing Problem Binary Tree Inorder Traversal Burning binary tree Equal Sum What is a Threaded Binary Tree? What is a full Binary Tree? Bubble Sort vs Merge Sort B+ Tree Program in Q language Deletion Operation from A B Tree Deletion Operation of the binary search tree in C++ language Does Overloading Work with Inheritance Balanced Binary Tree Binary tree deletion Binary tree insertion Cocktail Sort Comb Sort FIFO approach Operations of B Tree in C++ Language Recaman’s Sequence Tim Sort Understanding Data Processing Applications of trees in data structures Binary Tree Implementation Using Arrays Convert a Binary Tree into a Binary Search Tree Create a binary search tree Horizontal and Vertical Scaling Invert binary tree LCA of binary tree Linked List Representation of Binary Tree Optimal binary search tree in DSA Serialize and Deserialize a Binary Tree Tree terminology in Data structures Vertical Order Traversal of Binary Tree What is a Height-Balanced Tree in Data Structure Convert binary tree to a doubly linked list Fundamental of Algorithms Introduction and Implementation of Bloom Filter Optimal binary search tree using dynamic programming Right side view of binary tree Symmetric binary tree Trim a binary search tree What is a Sparse Matrix in Data Structure What is a Tree in Terms of a Graph What is the Use of Segment Trees in Data Structure What Should We Learn First Trees or Graphs in Data Structures All About Minimum Cost Spanning Trees in Data Structure Convert Binary Tree into a Threaded Binary Tree Difference between Structured and Object-Oriented Analysis FLEX (Fast Lexical Analyzer Generator) Object-Oriented Analysis and Design Sum of Nodes in a Binary Tree What are the types of Trees in Data Structure What is a 2-3 Tree in Data Structure What is a Spanning Tree in Data Structure What is an AVL Tree in Data Structure Given a Binary Tree, Check if it's balanced B Tree in Data Structure Convert Sorted List to Binary Search Tree Flattening a Linked List Given a Perfect Binary Tree, Reverse Alternate Levels Left View of Binary Tree What are Forest Trees in Data Structure Compare Balanced Binary Tree and Complete Binary Tree Diameter of a Binary Tree Given a Binary Tree Check the Zig Zag Traversal Given a Binary Tree Print the Shortest Path Given a Binary Tree Return All Root To Leaf Paths Given a Binary Tree Swap Nodes at K Height Given a Binary Tree Find Its Minimum Depth Given a Binary Tree Print the Pre Order Traversal in Recursive Given a Generate all Structurally Unique Binary Search Trees Perfect Binary Tree Threaded Binary Trees Function to Create a Copy of Binary Search Tree Function to Delete a Leaf Node from a Binary Tree Function to Insert a Node in a Binary Search Tree Given Two Binary Trees, Check if it is Symmetric A Full Binary Tree with n Nodes Applications of Different Linked Lists in Data Structure B+ Tree in Data Structure Construction of B tree in Data Structure Difference between B-tree and Binary Tree Finding Rank in a Binary Search Tree Finding the Maximum Element in a Binary Tree Finding the Minimum and Maximum Value of a Binary Tree Finding the Sum of All Paths in a Binary Tree Time Complexity of Selection Sort in Data Structure How to get Better in Data Structures and Algorithms Binary Tree Leaf Nodes Classification of Data Structure Difference between Static and Dynamic Data Structure Find the Union and Intersection of the Binary Search Tree Find the Vertical Next in a Binary Tree Finding a Deadlock in a Binary Search Tree Finding all Node of k Distance in a Binary Tree Finding Diagonal Sum in a Binary Tree Finding Diagonal Traversal of The Binary Tree Finding In-Order Successor Binary Tree Finding the gcd of Each Sibling of the Binary Tree Greedy Algorithm in Data Structure How to Calculate Space Complexity in Data Structure How to find missing numbers in an Array Kth Ancestor Node of Binary Tree Minimum Depth Binary Tree Mirror Binary Tree in Data Structure Red-Black Tree Insertion Binary Tree to Mirror Image in Data Structure Calculating the Height of a Binary Search Tree in Data Structure Characteristics of Binary Tree in Data Structure Create a Complete Binary Tree from its Linked List Field in Tree Data Structure Find a Specified Element in a binary Search Tree Find Descendant in Tree Data Structure Find Siblings in a Binary Tree Given as an Array Find the Height of a Node in a Binary Tree Find the Second-Largest Element in a Binary Tree Find the Successor Predecessor of a Binary Search Tree Forest of a Tree in Data Structure In Order Traversal of Threaded Binary Tree Introduction to Huffman Coding Limitations of a Binary Search Tree Link State Routing Algorithm in Data Structure Map Reduce Algorithm for Binary Search Tree in Data Structure Non-Binary Tree in Data Structure Quadratic Probing Example in Hashing Scope and Lifetime of Variables in Data Structure Separate Chaining in Data Structure What is Dynamic Data Structure Separate Chaining vs Open Addressing Time and Space Complexity of Linear Data Structures Abstract Data Types in Data Structures Binary Tree to Single Linked List Count the Number of Nodes in the Binary Tree Count Total No. of Ancestors in a Binary Search Tree Elements of Dynamic Programming in Data Structures Find cost of tree with prims algorithm in data structures Find Preorder Successor in a Threaded Binary Tree Find Prime Nodes Sum Count in Non-Binary Tree Find the Right Sibling of a Binary Tree with Parent Pointers Find the Width of the Binary Search Tree Forest trees in Data Structures Free Tree in Data Structures Frequently asked questions in Tree Data Structures Infix, Postfix and Prefix Conversion Time Complexity of Fibonacci Series What is Weighted Graph in Data Structure What is the Advantage of Linear Search?

Deque in Data Structure

Deque

A deque referred as “Double-Ended Queue”, is a linear collection of data items same like queue data structure. deque has two ends, front end and rear end, deque is the unrestricted type of data structure, data item can be added into it either front or rear and also data item can be removed or deleted from it either front or rear. Thus, it doesn’t follow first in first out rule. So we can say deque is the hybrid linear structure who provides the functionality of queue and stack in a single data structure.

Deque in Data Structure

Sub types of Deque

  • An input-restricted deque is the queue where deletion of data item can be done from both ends, but insertion can be done at one end only.
  • An output-restricted deque is the queue where insertion can be done at both end, but deletion can be done from one end only.

Language Support:-

  • In C++ provides implemention of deque as std::deque .
    • In java provides deque interface in collections module.
    • In python we can import deque from collections module.

Operations on Deque:-

  • Deque() creates a new deque that is empty. It doesn’t take any parameters and it returns an empty deque.
  • add_Front(data) adds a new data item in to the front of deque. We give data item as parameter and it returns nothing.
  • delete_Front() removes the data item from the front of the deque, returns the data item and it will be modified.
  • add_Rear(data) adds a new data item in to the end of deque, needs to take data as parameter and returns nothing.
  • delete_Rear() removes the data item from the end of deque,

returns the data item and it will be modified.

  • is_Empty() checks to see if the deque is empty and return boolean value.
  • Size() returns the number of items in the deque and return an integer.

Implementation of Deque in C langauge

1. By Circular Array

#include <stdio.h>
 #define MAX 10
 void add_Front(int *, int, int *, int *);
 void add_Rear(int *, int, int *, int *);
 void del_Front(int *, int *, int *);
 void del_Rear(int *, int *, int *);
 void display(int *,int *, int *);
 int main()
 {
 int deque[MAX];
             int front, rear, data,n;
             front = rear = -1;
             for (int i = 0; i < MAX; i++)
             {
                          deque[i] = 0;
             }
              add_Front(deque, 20, &front, &rear);
              add_Rear(deque, 4, &front, &rear);
             add_Front(deque, 7, &front, &rear);
             printf("\nElements in a deque: ");
             display(deque, &front, &rear);
             del_Front(deque, &front, &rear);
             printf("\nElements in a deque after Removing: ");
             display(deque, &front, &rear);
             add_Rear(deque, 54, &front, &rear);
             add_Rear(deque, 76, &front, &rear);
             printf("\nElements in a deque after Addition: ");
             display(deque, &front, &rear);
             del_Rear(deque, &front, &rear);
             printf("\nElements in a deque after Removing: ");
             display(deque, &front, &rear);
 }
 void add_Front(int * deque, int data, int *front, int *rear)// For adding an element at the front of deque
 {
       if ((*front == 0 && *rear == MAX-1) || *front == (*rear)+1)// For checking deque is full or not
             {
                          printf("\nDeque is full.\n");
                          return;
             }
 else if (*front == -1 && *rear==-1)
             {
                          *front = *rear = 0;
                           deque[*front] = data;
                              return;
              }
 else if(*front==0)
 {
                          *front=MAX-1;
                          deque[*front] = data;
                          return;
             }
             else
 {
                          (*front)--;
                         deque[*front]=data;
                         return;
             }
 }
 void add_Rear(int * deque, int data, int *front, int *rear)// For adding an element at the end of deque
 {
             if (*front == 0 && *rear == MAX-1 || *front== (*rear)+1 )
             {
                          printf("\nDeque is full.\n");
                          return;
             }
 else if (*front == -1 && *rear==-1)
             {
                          *front = *rear = 0;
                           deque[*rear] = data;
                          return;
              }
 else if(*rear==MAX-1)
 {
                          *rear=0;
                          deque[*rear] = data;
                          return;
             }
             else
 {
                          (*rear)++;
                         deque[*rear]=data;
                         return;
             }
 }
 void del_Front(int *deque,int *front, int *rear)// For removing an element from the front of deque
 {
             if(*front == -1 && *rear==-1)
             {
                          printf("\nDeque is Empty.\n");
                          return;
             }
             else if(*front==*rear)
             {
                         printf("\nRemoved Data_item: %d", deque[*front]);
                         *front=*rear=-1;
                         return;
             }
             else if(*front==MAX-1)
             {
                         printf("\nRemoved Data_item: %d", deque[*front]);
                         *front=0;
                         return;
             }
             else
             {
                         printf("\nRemoved Data_item: %d", deque[*front]);
                         (*front)++;
                         return;
             }
 }
 void del_Rear(int * deque,int *front, int *rear)// For removing an element from the end of deque
 {
             if(*front == -1 && *rear==-1)// For checking deque is empty or not
             {
                          printf("\nDeque is Empty.\n");
                          return;
             }
             else if(*front==*rear)
             {
                         printf("\nRemoved Data_item: %d", deque[*rear]);
                         *front=*rear=-1;
                         return;
             }
             else if(*rear==0)
             {
                         printf("\nRemoved Data_item: %d", deque[*rear]);
                         *rear=MAX-1;
                         return;
             }
             else
             {
                         printf("\nRemoved Data_item: %d", deque[*rear]);
                         (*rear)--;
                         return;
             }
 }
 void display(int *deque, int *front, int *rear)// For printing the elements of the deque
 {
             int i=*front;
             printf("\nFront: ");
             while(i!=*rear)
             {
                         printf("%d ",deque[i]);
                         i=(i+1)%MAX;
             }
             printf("%d",deque[*rear]);
             printf(" :Rear");
 } 

Output:-

Deque in Data Structure

2. By Doubly Linked list

#include<stdio.h>
 #include<stdlib.h>
 struct node//
 {
 int info;
 struct node *next;
 struct node *back;
 };
 struct node *start = NULL;
 struct node *uni = NULL;
 void add_Front(int item) // For adding an element at the front of deque
 {
             struct node *p,*t,*k;
              if(start == NULL)
              {
              p=start;
              t=(struct node *)malloc(sizeof(struct node ));
              start = t;
              start->info=item;
              start->next=p;
              start->back=NULL;
             }
              else
              {
              k=start->back;
              p=start;
              t=(struct node *)malloc(sizeof(struct node ));
              start=t;
              start->info=item;
              start->next=p;
              start->back=NULL;
              k=start;
              }
 }
 void add_Rear(int item) // For adding an element at the end of deque
 {
 struct node *t,*p;
 t=(struct node *)malloc(sizeof(struct node ));
 if(start==NULL)
 {
 start=t;
 start->info=item;
 start->next=NULL;
 start->back=NULL;
 return;
 }
 else
 {
 struct node *p=start,*k;
 while(p->next!=NULL)
 {
 p=p->next;
 }
 k=p;
 p->next=t;
 p=p->next;
 p->info=item;
 p->next=NULL;
 p->back=k;
 uni=p;
 }
 }
 void del_Front()// For removing an element from the front of deque
 {
              struct node *t,*p;
              if(start==NULL)
              {
                         printf("Deque is Empty\n");
              }
              else if(start->next==NULL)
              {
                         printf("Removed Elements is %d\n",start->info);
                         start = NULL;
              }
              else
              {
                          p =start;
                          t = start->next;
                         start = t;
                          start->back = NULL;
                          printf("Removed Elements is %d\n",p->info);
                          free(p);
              }
 }
 void del_Rear()// For removing an element from the end of deque
 {
              struct node *t;
              if(start==NULL)//For checking the deque is empty or not
              {
                         printf("Deque is Empty\n");
              }
              else if(start->next==NULL)
              {          
                         printf("Removed Elements is %d\n",start->info);
                         start = NULL;
              }
              else
              {
                          t=start;
                          while(t->next->next! = NULL)
                          {
                                      t=t->next;
                          }
                         printf("Removed Elements is %d\n",t->next->info);
                          t->next=NULL;
                          return;
              }
 }
 void traverse(struct node * t) // For printing the elements of the deque
 {
 if(t==NULL)
 {
                         printf(" Deque is empty\n");
             }
             while(t->next!=NULL)
             {
                         printf("%d<->",t->info);
                         t=t->next;
             }
             printf("%d\n",t->info);
 }
 void main()//Driver code
 {
 int n,data,i,item,pos;
 while(1)
 {          
 printf(" 1. Add at Front");
 printf("\n 2. Add at Rear");
 printf("\n 3. Delete from Front");
 printf("\n 4. Delete from Rear");
 printf("\n 5. Traverse the Deque");
 printf("\n 6. Exit\n");
 printf("Enter the choice:-\n");
 scanf("%d",&n);
 switch(n)
 {
 case 1:
                                                  printf("Enter the item which do you wanna insert at Front:-\n");
                          scanf("%d",&item);
                                                  add_Front(item);
                                                  break;
 case 2:
                                                  printf("Enter the item which do you wanna insert at Rear:-\n");
                                                  scanf("%d",&item);
                                                  add_Rear(item);
                                                  break;
 case 3:
                                                  del_Front();
                                                  break;
 case 4:
                                                  del_Rear();
                                                  break;
 case 5:
                                                  printf("Elements in deque is:");
                                                  traverse(start);
                                                  break;
 case 6:
                                                  exit(0);
 }
 }
 } 

Output:-

Deque in Data Structure
Deque in Data Structure

Deque implementation in python:-

We can use deque directly in python which will import deque from collections module. For practice purposes, we do possible implementation below of a deque using python list.

                Class Deque(object):
                                 def_init_(self):
                                                 Self.items=[]
                                def is_Empty(self):
                                                 Return self.items==[]
                                 def add_Front(self, data):
                                                 self.itmes.insert(0,data)
                                 def add_Rear(self, data):
                                                 self.items.append(data)
                                 def delete_Front(self):
                                                 return self.items.pop(0)
                                 def delete_Rear(self):
                                                 return self.items.pop()
                                 def size(self):
                                                 return len(self.items) 

In add_front  we use the insert() method with position 0. So data item add 0th place of the list and if we want add data item in rear so we need to use append() method so data item can be added to the end of the list. Likely for removing data item from the queue we use pop() method with 0th position for remove  data item from the front of list and simple use pop() method for remove data item from the end of the list.

Time Complexity of Deque Operations

 The time complexity of deque operations like add_front(),add_Rear(),delete_front(),delete_Rear() is contant which is o(1) by Circular Array or Doubly Linked List.

In the above example, we have implemented various operations on deque assume as d and currently empty in the table given below:

  Deque Operation              Deque Contents                            Retrun Value
    d.is_Empty                                                                     []                                True
    d.add_front(“cat”)                   [“cat”]               
    d.add_Rear(2)                   [“cat”, 2] 
    d.delete_Front()                   [2]                                “cat”
    d.add_Rear(“dog”)                   [2, ”dog”] 
    d.add_Front(“tiger”)                   [“tiger”, 2 ,”dog”] 
    d.size()                   [“tiger” ,2, ”dog”]                                    3
    d.is_Empty()                   [“tiger” ,2, ”dog”]                                 False
    d.delete_Rear()                   [“tiger”, 2]                                 “dog”
    d.add_Front(10)                   [10, ”tiger”, 2]      
    d.delete_Front()                   [ ”tiger”, 2]                                        10
    d.size()                   [“tiger”, 2]                                    2

Applications of Deque

  • In the internet browser’s history we use deque for recently visited URL’s as to the front of the queue.
  • In computer application undo operation uses deque for storing application’s list.
  • As deque supports both stack and queue operation, so it can be used as both.

Standard problem on Deque

An interesting problem that can be solved by deque data structure easily is palindrome problem. A Palindrome is a string if we read this string from both ends of it then it would be same like madam, radar etc. we will try to make solution so we can check the string whether it is a palindrome or not.

The solution of this problem we store the characters of string in deque from left to right like ordinary queue so front end will hold the first character of string and rear end will hold the last character of string after that we will remove the characters from front as well as rear end simultaneously and check them if they match to each other continuously then string is palindrome otherwise not.